These HDF5 files contain reconstructed snow and ice melt over the Sierra Nevada USA from CY 2001-2017 using the ParBal model (Bair et al., 2016; Rittger et al., 2016; Bair et al., 2018). Since those papers, we've made two important changes to ParBal: 1) is to use the new CERES 4A 1 hr forcings; 2) to use a new grain size to clean snow albedo function. The clean snow albedo is still then adjusted for impurities, see Bair et al. (2016). All of the current code for ParBal is on GitHub: https://github.com/edwardbair/ParBal. The projection is California Albers with 500 m square pixels and size 1450x876. The h5 files can be read with several software packages. We use MATLAB. I've included the GetCoordinateInfo.m MAT file to help with reading the geographic information. For further help with the spatial information, I've included a "spatial_info.mat" MATLAB file containing: hdr - a structure with the Referencing matrix, RasterReference, and Projection Structure x - grid of x coordinates (center of pixel) in CA Albers y - grid of y coordinates in CA Albers lat - grid of latitudes in CA albers lon - grid of longitudes in CA albers The h5 files contain: MATLAB datetimes, geographic information, spacetime cubes of daily melt, SWE, and maxswedates, which are not used for this dataset. The spacetime cubes are each one day, begin on 1-1 and end on 12-31. For example, in MATLAB, this shows the structure of the CY h5 file. h5disp('reconstruction_sierra_500m_CY2017.h5') HDF5 reconstruction_sierra_500m_CY2017.h5 Group '/' Attributes: 'MATLABdates': 736696.000000 736697.000000...736998.000000 Group '/Grid' Attributes: 'mapprojection': 'eqaconicstd' 'angleunits': 'degrees' 'aspect': 'normal' 'falsenorthing': -4000000.000000 'falseeasting': 0.000000 'geoid': 6378137.000000 0.081819 'maplatlimit': -90.000000 90.000000 'maplonlimit': -255.000000 15.000000 'mapparallels': 34.000000 40.500000 'nparallels': 2.000000 'origin': 0.000000 -120.000000 0.000000 'scalefactor': 1.000000 'trimlat': -90.000000 90.000000 'trimlon': -135.000000 135.000000 'ReferencingMatrix': 3x2 H5T_FLOAT Dataset 'maxswedates' Size: 1450x876 MaxSize: 1450x876 Datatype: H5T_IEEE_F64LE (double) ChunkSize: 1450x876 Filters: deflate(9) FillValue: 0.000000 Dataset 'melt' Size: 1450x876x303 MaxSize: 1450x876x303 Datatype: H5T_STD_U16LE (uint16) ChunkSize: 1450x876x1 Filters: deflate(9) FillValue: 0 Attributes: 'units': 'mm' Dataset 'swe' Size: 1450x876x303 MaxSize: 1450x876x303 Datatype: H5T_STD_U16LE (uint16) ChunkSize: 1450x876x1 Filters: deflate(9) FillValue: 0 Attributes: 'units': 'mm' To read the coordinate info: hdr=GetCoordinateInfo('reconstruction_sierra_500m_CY2017.h5','/Grid',[1450 876]); To read all the SWE values for 2017: yearswe=h5read('reconstruction_sierra_500m_CY2017.h5','/Grid/swe'); The h5 files are stored with block compression such that each day can be decompressed and read without going through the entire spacetime cube. For example, to read doy 91 (2017-4-1): dayswe=h5read('reconstruction_sierra_500m_CY2017.h5','/Grid/swe',[1 1 91],[1450 876 1]); Note that the h5 file from WY 2017 is only 303 days (2017-1-1 to 2017-10-30) because the CERES 4A data were not available past Oct 2017 when these reconstructions were done. NB 2018-10-3 Bair, E.H., Abreu Calfa, A., Rittger, K. and Dozier, J., 2018. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan. The Cryosphere, 12(5): 1579-1594. Bair, E.H., Rittger, K., Davis, R.E., Painter, T.H. and Dozier, J., 2016. Validating reconstruction of snow water equivalent in California's Sierra Nevada using measurements from the NASA Airborne Snow Observatory. Water Resources Research, 52: 8437-8460. Rittger, K., Bair, E.H., Kahl, A. and Dozier, J., 2016. Spatial estimates of snow water equivalent from reconstruction. Advances in Water Resources, 94: 345-363.